Genetic Programming for Predicting Protein Networks
نویسندگان
چکیده
One of the definitely unsolved main problems in molecular biology is the protein-protein functional association prediction problem. Genetic Programming (GP) is applied to this domain. GP evolves an expression, equivalent to a binary classifier, which predicts if a given pair of proteins interacts. We take advantages of GP flexibility, particularly, the possibility of defining new operations. In this paper, the missing values problem benefits from the definition of if-unknown, a new operation which is more appropriate to the domain data semantics. Besides, in order to improve the solution size and the computational time, we use the Tarpeian method which controls the bloat effect of GP. According to the obtained results, we have verified the feasibility of using GP in this domain, and the enhancement in the search efficiency and interpretability of solutions due to the Tarpeian method.
منابع مشابه
A Genetic Programming-based trust model for P2P Networks
Abstract— Peer-to-Peer ( P2P ) systems have been the center of attention in recent years due to their advantage . Since each node in such networks can act both as a service provider and as a client , they are subject to different attacks . Therefore it is vital to manage confidence for these vulnerable environments in order to eliminate unsafe peers . This paper investigates the use of genetic ...
متن کاملEstimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming
Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...
متن کاملApplication of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries
Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...
متن کاملModeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming
Considering the importance of water and computing the amount of rainfall runoff resulted from precipitation in recent decades, using appropriate methods for predicting the amount of runoff from rainfall date has been really essential. Rainfall-runoff models are used to estimate runoff generated from precipitation in the catchment area. Rainfall-runoff process is totally a non-linear phenomenon....
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملA New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor
Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...
متن کامل